Suites numériques

Classe de Première STMG - Lycée Saint-Charles

Patrice Jacquet - www.mathxy.fr

Objectifs:

- Connaître la notion de suite.
- Savoir représenter graphiquement une suite.
- Connaître les caractéristiques des suites arithmétiques.
- Connaître les caractéristiques des suites géométriques.

1 Généralités

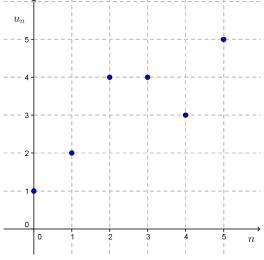
Définition 1 – suite numérique

Une suite numérique est une liste de nombres. Chaque nombre est appelé terme de la suite. On note généralement la suite (u_n) .

Exemple : Les six premiers termes d'une suite (u_n) sont 8, 10, 11, 14, 16, 20 ... En numérotant les termes à partir de 0, on voit que :

• le terme de rang 0 est 8

 \bullet le terme de rang 4 est 16


Remarque : le terme de rang 4 est noté u_4 .

Dans l'exemple ci-dessus, on a donc : $u_0 = 8$, $u_1 = 10$, $u_4 = 16$

2 Représentation graphique

Définition 2 - Représentation graphique d'une suite

L'ensemble des points de coordonnées $(n; u_n)$ constitue la **représenta**tion graphique de la suite (u_n) .

Représentation graphique de la suite 1, 2, 4, 4, 3, 5.

3 Suites arithmétiques

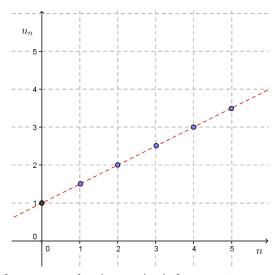
Définition 3 – Suite arithmétique

Une suite est ${\bf arithm\acute{e}tique}$ lorsque l'on passe d'un terme au suivant en ajoutant à chaque fois le même nombre a :

$$u_{n+1} = u_n + a$$

le nombre a est appelé **raison** de la suite.

Exemple: Les nombres 3, 7, 11, 15, 19, 23 forment le début d'une suite arithmétique de raison 4.


Propriété 1 – Sens de variation d'une suite arithmétique

- Si la raison est positive, la suite arithmétique est croissante.
- Si la raison est négative, la suite arithmétique est décroissante.

Propriété 2 – Représentation graphique

Une suite arithmétique est représentée graphiquement par des **points** alignés : on parle de croissance linéaire.

Remarque : On peut reconnaître la nature arithmétique d'une suite à partir de sa représentation graphique.

Représentation graphique de la suite arithmétique (u_n) de premier terme $u_0 = 1$ et de raison r = 0, 5. (Les points sont sur la droite d'équation y = 0, 5x + 1).

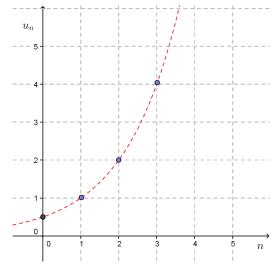
4 Suites géométriques

Définition 4 – Suite géométrique

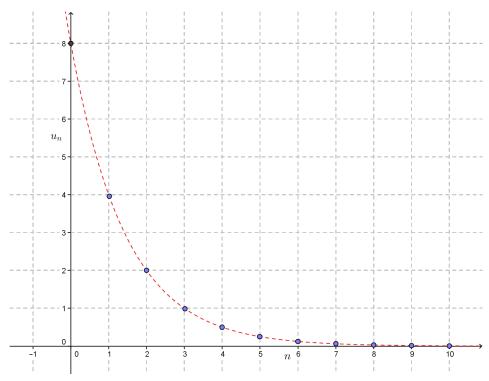
Une suite est**géométrique** lors que l'on passe d'un terme au suivant en multipliant à chaque fois le même nombre q:

$$u_{n+1} = u_n \times q$$

le nombre q est appelé **raison** de la suite.


Exemple: Les nombres 1, 2, 4, 8, 16, 32 forment le début d'une suite géométrique de raison 2.

Propriété 3 – Sens de variation d'une suite géometrique


- Si la raison est supérieure à 1, la suite géométrique est croissante.
- Si la raison est comprise entre 0 et 1, la suite géométrique est décroissante.

Propriété 4 – Représentation graphique

Une suite géométrique est représentée graphiquement par des points situés sur une courbe, dite **exponentielle**.

Représentation graphique de la suite géométrique (u_n) de premier terme $u_0 = 0.5$ et de raison q = 2.

Représentation graphique de la suite géométrique (u_n) de premier terme $u_0=8$ et de raison q=0.5.